Inhibition of translation initiation following glucose depletion in yeast facilitates a rationalization of mRNA content.

نویسندگان

  • Jennifer Lui
  • Susan G Campbell
  • Mark P Ashe
چکیده

Glucose is the preferred carbon source for most eukaryotes and so it is important that cells can sense and react rapidly to fluctuations in glucose levels. It is becoming increasingly clear that the regulation of gene expression at the post-transcriptional level is important in the adaptation to changes in glucose levels, possibly as this could engender more rapid alterations in the concentrations of key proteins, such as metabolic enzymes. Following the removal of glucose from yeast cells a rapid inhibition of translation is observed. As a consequence, mRNPs (messenger ribonucleoproteins) relocalize into cytoplasmic granules known as P-bodies (processing bodies) and EGP-bodies. mRNA decay components localize into P-bodies, and thus these assemblies are likely to represent sites where mRNAs are targeted for degradation. In contrast, EGP-bodies lack any decay components and contain the eukaryotic translation initiation factors eIF4E, eIF4G and Pab1p, as well as other RNA-binding proteins. Therefore EGP-bodies probably constitute sites where mRNAs are earmarked for storage. So, it is possible that cells distinguish between transcripts and target them to either P-bodies or EGP-bodies depending on their functional value. The localization of mRNAs into these granules following glucose starvation may serve to preserve mRNAs that are involved in the diauxic shift to ethanol growth and entry into stationary phase, as well as to degrade mRNAs that are solely involved in glucose fermentation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glucose depletion rapidly inhibits translation initiation in yeast.

Glucose performs key functions as a signaling molecule in the yeast Saccharomyces cerevisiae. Glucose depletion is known to regulate gene expression via pathways that lead to derepression of genes at the transcriptional level. In this study, we have investigated the effect of glucose depletion on protein synthesis. We discovered that glucose withdrawal from the growth medium led to a rapid inhi...

متن کامل

Loss of ypk1 function causes rapamycin sensitivity, inhibition of translation initiation and synthetic lethality in 14-3-3-deficient yeast.

14-3-3 proteins bind to phosphorylated proteins and regulate a variety of cellular activities as effectors of serine/threonine phosphorylation. To define processes requiring 14-3-3 function in yeast, mutants with increased sensitivity to reduced 14-3-3 protein levels were identified by synthetic lethal screening. One mutation was found to be allelic to YPK1, which encodes a Ser/Thr protein kina...

متن کامل

mRNA localization to Pbodies in yeast is biphasic with many mRNAs captured in a late Bfr1pdependent wave

The relocalization of translationally repressed mRNAs to mRNA processing bodies Pbodies is a key consequence of cellular stress across many systems. Pbodies harbor mRNA degradation components and are implicated in mRNA decay, but the relative timing and control of mRNA relocalization to Pbodies is poorly understood. We used the MS2GFP system to follow the movement of specific endogenous mRNAs i...

متن کامل

Glucose depletion inhibits translation initiation via eIF4A loss and subsequent 48S preinitiation complex accumulation, while the pentose phosphate pathway is coordinately up-regulated

Cellular stress can globally inhibit translation initiation, and glucose removal from yeast causes one of the most dramatic effects in terms of rapidity and scale. Here we show that the same rapid inhibition occurs during yeast growth as glucose levels diminish. We characterize this novel regulation showing that it involves alterations within the 48S preinitiation complex. In particular, the in...

متن کامل

The role of polyamines in supporting growth of mammalian cells is mediated through their requirement for translation initiation and elongation.

Polyamines are essential cell constituents whose depletion results in growth cessation. Here we have investigated potential mechanisms of action of polyamines in supporting mammalian cell proliferation. We demonstrate that polyamines regulate translation both at the initiation and at the elongation steps. L-alpha-difluoromethylornithine treatment resulting in polyamine depletion reduces protein...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 38 4  شماره 

صفحات  -

تاریخ انتشار 2010